
Matrix mechanics and regulation
of the fibroblast phenotype
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Fibroblasts are pivotal cells for ensuring normal con-
nective tissue turnover and homeostasis and the repair
of tissues after injury or insult. Deregulation of these
activities leads to of fibrocontractive diseases. The
term ‘fibroblast’ generally encompasses stromal cells
that do not expressmarkers specific for any othermes-
enchymal cell lineage, such as smooth muscle cells,
pericytes and multipotent progenitor cells. This rather
loose definition and the lack of molecular-defined
fibroblast markers often leads to the misconception
that fibroblasts are all equal. However, in skin dermis,
for instance, different layers host different fibroblast
populations (167, 203, 224). Another good example of
fibroblast heterogeneity is found in the periodontium,
where gingival and periodontal ligament fibroblasts
are the most prominent fibroblast populations (138,
152, 162, 176). Heterogeneity exists also within the
populations of gingival fibroblasts (20, 244) and peri-
odontal ligament fibroblasts (193, 211). Both popula-
tions have been reported to contain a fraction of cells
with stem-cell characteristics and self-renewal capac-
ity (60, 106, 243). These multipotent cells may com-
prise the fibroblast progenitor cells reported
previously, but are not necessarily identical (137).

Periodontal ligament fibroblasts are oriented along
collagen fibers throughout the whole ligament and
are responsible for the unusually high collagen turn-
over in the periodontal ligament compared with other
connective tissues (153, 201). They preserve collagen
homeostasis in the periodontium according to
mechanical challenge. Cells perceive mechanical sig-
nals by forming intimate contacts with collagen fibrils
and intracellular stress fibers (153). The formation of
in-vivo stress fibers is limited to a very small number
of fibroblast populations, such as alveolar septa fibro-
blasts in the lung (121), heart valve fibroblasts (207)
and pericryptal fibroblasts in the gut (1), that play
active roles in mechanotransduction or are exposed
to an active mechanical environment. Formation of

stress fibers is part of a cell-protection response to
mechanically loaded tissue, but the development of
contractile features is also pivotal for fibroblasts to
mechanosense through cell–extracellular matrix link-
ages; this function will be discussed later in the text.
Gingival fibroblasts preserve the architecture of the
connective tissue underlying the gingival epithelium
and attaching to the bone of the jaw. Dysregulation of
gingival fibroblast activities in secreting and remodel-
ing collagen is associated with gingival overgrowth,
including that observed in hereditary gingival fibro-
matosis (34, 198, 212). Consistent with these func-
tional differences, periodontal ligament and gingival
fibroblasts exhibit different biologic reactions in
response to environmental factors, including infec-
tion (195) and mechanical challenge (175) to give only
two examples.

Mechanical challenges for
fibroblasts

Stress forms character

In addition to distinct embryological origins (61) and
inherent molecular differences (64), periodontal
fibroblast populations of different phenotypes and
with different functions are generated by their chemi-
cal and mechanical environments or, to use a more
popular term, ‘niches’. Mechanical challenges are
among the most dominant factors determining cell
character (101, 206). Gingival fibroblasts live in a
rather loose collagen extracellular matrix that is sur-
rounded by cementum, epithelium and bone,
whereas the collagen arrangement around periodon-
tal ligament fibroblasts is more organized and denser
and is confined by bone and cementum (162). Fibro-
blasts in the normal periodontium are exposed to a
variety of mechanical stimuli. They are strained and
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compressed during mastication and tooth move-
ments (85, 133). These mechanical signals are impor-
tant in adopting the ligament’s collagen structure to
the levels of applied stress (74, 84, 153). Gingival fibro-
blasts are frequently exposed to small injuries and are
responsible for regenerating the connective tissue
structure (e.g. in the wound-healing response around
implants) (80, 175). Mechanical signals from the
extracellular matrix are crucial for controlling
the onset and termination of the repair process. The
effects of various mechanical stimuli on fibroblasts in
different organs, including the periodontium, has
been discussed in excellent reviews (12, 26, 28, 45,
101, 108, 113, 114, 170, 221, 225). In the present article
I will concentrate on the influence of tissue stiffening
on fibroblast function and phenotype.

How stiff is our body?

Tissue stiffness is measured using Young’s elastic
modulus with the dimension Pascal (Pa). Over the last
decade, the elastic modulus of a great number of tis-
sues and organs has been assessed at the cellular per-
ception level using atomic force microscopy
indentation (24, 115) (Fig. 1). Very soft organs, not
surprisingly, are bone marrow (230), brain (0.1–
0.5 kPa) (55) and fat (1–3 kPa) (23). Soft organs are
liver (1–2 kPa) (70) and lung parenchyma (2–4 kPa)
(144), whereas muscular tissues are of medium stiff-
ness (10–15 kPa) (16, 49, 50). Bone and teeth, again
not surprisingly, are the stiffest structures in our body
(100). The mechanical properties of periodontal
structures, including the periodontal ligament and

gingiva, have been measured and delivered elastic
moduli spanning a wide range from tens of kPa to
GPa (54, 188, 239). This high variation is partly
explained by the use of various different methods to
quantify tissue elasticity and partly by the heteroge-
neity of periodontal tissues. Few studies that used the
atomic force microscope to measure the stiffness of
collagen structures in the periodontium delivered
elastic moduli in the GPa range (100) and the elastic
modulus of the periodontal ligament was 10–50 MPa
(99).

The stiffness of the extracellular matrix influences
cell behavior at different levels, including prolifera-
tion, differentiation, migration and gene expression
(44, 45, 53, 91, 113, 115, 149). When cultured on
substrates matching the stiffness of brain, muscle or
pre-bone (osteoid), mesenchymal stromal cells neo-
express early markers of the corresponding cell lin-
eages (51). Substrate stiffness similarly affects early
differentiation events in cultured embryonic stem
cells (53), epidermal stem cells (213) and muscle pre-
cursor cells (49, 63, 185). Cardiomyocytes differentiate
into striated muscle cells on synthetic gel substrates
with the same stiffness as cardiac muscle (112, 241).
Endothelial cells adapt their phenotype to the stiff-
ness of soft culture substrates (25), and neuronal cells
exhibit preferential growth on brain-soft substrates
that eliminate contaminating glial cells from the tis-
sue preparation (55, 71). Fibroblastic cells, including
gingival and periodontal ligament fibroblasts, gener-
ally become activated upon exposure to substrates
that are stiffer than their physiological environment
(91), as discussed in the next section.

Fig. 1. The stiffness of our body. The stiffness range of different organs and tissues, determined by atomic force micros-
copy, is measured using Young’s elastic modulus and presented in kPa. Note that fibrotic tissue (here stylized for a fibrotic
lung) is always stiffer than normal tissue. References supporting this scheme are given in the text.
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When tissue stiffness changes: injury,
repair and regeneration

Fibroblasts are stress-shielded by the collagen archi-
tecture of intact connective tissues, which is most evi-
dent in tendon, ligaments and dermis (209).
Consistently, culturing fibroblastic cells on substrates
with the physiological stiffness of the normal organ
often preserves a comparably quiescent cell pheno-
type. Mouse embryonic fibroblasts remain quiescent
on normal organ-stiff polymer substrate culture (128).
Human bone marrow-derived mesenchymal stromal
cells grown on culture substrates with a stiffness simi-
lar to that of the soft bone marrow extracellular
matrix remain quiescent but are viable in culture
(230). Activated valvular fibroblasts can be silenced
by dynamically changing substrate stiffness from high
to low (223), and culture on soft substrates is
employed to prevent hepatic stellate cell activation
(168). Conversely, exposing fibroblastic cells to patho-
logically stiff culture conditions mechanically acti-
vates a ‘myofibroblast program’. In vivo, loss of the
protective tissue collagen structure as a result of
injury directly exposes fibroblasts to mechanical
stress and initiates a repair program aiming to restore
the mechanical tissue integrity (209). Tissue stiffening
occurs as a consequence of collagen remodeling dur-
ing wound healing and/or pathological accumulation
of collagen during fibrosis (98, 234). Similarly to other
tissues, injury of the periodontium activates precur-
sor cells to become reparative myofibroblasts (163).
However, unlike most other adult tissues, but simi-
larly to embryonic tissues, oral gingiva and oral
mucosa scar only a little upon reasonable injury
(196). This property, together with the progenitor
character of the stromal cell subpopulations, renders

oral gingiva, mucosa and periodontal ligament as
attractive sources of regenerative cells (37, 60). Such
cells, with regenerating and nonfibrotic properties,
are being considered for restoring diseased arteries
and large-area skin wounds (47, 52), where tissue
contraction and stiffening caused by the action of
myofibroblasts jeopardize the positive outcome of
cell therapy (68).

Myofibroblasts – it takes a stressed
cell to get a dirty job done

A myofibroblast warrant

Myofibroblasts were discovered 41 years ago, in
wound granulation tissue, as fibroblastic cells that
exhibit prominent endoplasmatic reticulum and con-
tractile microfilament bundles (66). These ultrastruc-
tural features, indicating simultaneous high
extracellular matrix secretion and contractile activity,
coined their name, and the functional predictions
deduced from their phenotype have been confirmed
over the last four decades by hundreds of studies.
Another hallmark feature, and the molecular basis for
the high contractile activity of the myofibroblast, is
the neo-expression of alpha smooth muscle actin in
stress fibers (209) (Fig. 2). By strict definition, alpha
smooth muscle actin-positive cells that do not form
microfilament bundles are not myofibroblasts
because they lack their defining contractile element
(91). Conversely, alpha smooth muscle actin-negative
fibroblastic cells that display microfilament bundles
are functional contractile myofibroblasts, at least
in vivo. As fibroblastic cells almost inevitably form
microfilament bundles (stress fibers) in standard

Fig. 2. Myofibroblast features in vitro. After 4 days of cul-
ture in the absence (fibroblasts) or the presence (myofibro-
blasts) of transforming growth factor beta-1, primary
fibroblasts were immunostained. Compared with fibro-
blasts, myofibroblasts exhibit more prominent stress fibers

(F-actin: red, purple in overlay) that are positive for alpha
smooth muscle actin (blue, purple in overlay). Myofibro-
blast focal adhesions (vinculin: green) at the termini of
stress fibers are larger than are fibroblast cell–extracellular
matrix adhesions. Scale bar: 20 lm.
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cell-culture conditions, the term ‘myofibroblast’ is
usually used to describe alpha smooth muscle actin-
positive stress fiber-forming cells. The percentage of
fibroblasts that will spontaneously become alpha
smooth muscle actin-positive myofibroblasts in stan-
dard culture is variable and often characteristic for
the species and tissue origin (91, 191).

Myofibroblast heterogeneity

Myofibroblast activation from a variety of different
precursor cells is a key event in physiological and
pathological tissue repair. Myofibroblasts are primar-
ily extracellular matrix-secreting cells and are largely
responsible for the contractility of scar tissue as it
matures over time (98, 229, 234, 236). The contribu-
tion of myofibroblasts to normal tissue repair (89),
and their specific implications in different fibrotic
conditions, has been discussed for the lung (5, 81,
166, 233), liver (86, 109, 111), kidney (77, 154), skeletal
muscle (197), systemic sclerosis (9, 18, 19), heart (132,
190, 218), the stroma reaction to tumors (38, 171) and
fibrosis in the oral cavity (34, 198, 212).

Similarly to ‘fibroblast’, ‘myofibroblast’ comprises
an equally heterogeneous collection of cells and
describes a phenotype rather than a cell type. A num-
ber of recent reviews have considered the nature of
myofibroblast progenitors in different organs (97),
which include local fibroblasts (32, 38, 41, 46, 89, 179),
fibrocytes (15, 87, 124), smooth muscle cells (33), peri-
cytes (6, 105, 126, 143), endothelial and epithelial cells
undergoing endothelial or epithelial-to-mesenchymal
transition (21, 27, 136, 177, 184), mesenchymal stro-
mal cells (90, 156) and hepatic stellate cells (41), to
name only the most prominent. Both gingival fibro-
blasts and periodontal fibroblasts can be activated to
become myofibroblasts during chronic inflammation,
injury or fibrosis of the periodontium (153, 163).

Regulation of myofibroblast contraction

Because myofibroblasts share properties of fibro-
blasts (e.g. collagen secretion) and smooth muscle
cells (e.g. alpha smooth muscle actin expression), the
question has been raised regarding how myofibro-
blasts regulate the contractile activity that ultimately
produces tissue contractures. Myofibroblasts, like
smooth muscle cells and fibroblasts, develop contrac-
tile force upon phosphorylation of myosin light chain,
which allows the myosin head to interact with actin
filaments. This action is terminated by dephosphory-
lation of myosin light chain via the action of the myo-
sin light chain phosphatase. In smooth muscle cells,

increased levels of cytosolic Ca2+ regulate contraction
by regulating the activity of myosin light chain kinase
via Ca2+/calmodulin. In fibroblastic cells, RhoA regu-
lates contraction by regulating the myosin light chain
phosphatase. Active RhoA activates the Rho-(associ-
ated) kinase, leading to inactivation of myosin light
chain phosphatase and thus to continued contraction
(122, 127). In a recent review, we reported that the
current literature supports myofibroblast contraction
regulation by both cytosolic Ca2+ and Rho/Rho-(asso-
ciated) kinase (58) (Fig. 3).

Experiments with myofibroblast-populated wound
granulation tissue strips suggest RhoA as the chief
regulator of myofibroblast contractile activity. Inhibi-
tion of myosin light chain phosphatase using calycu-
lin was shown to be sufficient to induce strip
contraction (210), whereas increasing cytosolic Ca2+

by membrane depolarization and the addition of Ca2+

ionophore had little effect on myofibroblast contrac-
tion of tissue strips and collagen gels (210).
Corresponding data were produced using three-
dimensional myofibroblast-populated collagen gels
(48, 165, 173, 237). Using two-dimensional deform-
able culture substrates that allow visualization of cell
contractile forces, inhibition of Rho was shown to
block myofibroblast contraction, whereas stimulation
with lysophosphatic acid, an upstream effector of
Rho, enhanced force development (57, 232). Con-
versely, other studies support that the level of cyto-
solic Ca2+ mainly regulates myofibroblast
contraction. Administration of calmodulin inhibitors
impaired closure of full-thickness rat skin wounds
(140) by myofibroblast contraction. Stimulation of
myofibroblast-populated tissue strips with agonists
that induce increases of Ca2+ in smooth muscle cells
results in the induction of contraction (65, 76, 93, 148,
210). Contraction of three-dimensional collagen gel
cultures of various different myofibroblast popula-
tions was regulated by cytosolic Ca2+ dynamics rather
than by RhoA activity (30, 125, 135, 186). Similar
results were obtained by treating two-dimensional
myofibroblast cultures with agonists that induce cyto-
solic Ca2+ transients (123, 178).

One possible explanation for these seemingly con-
tradictory observations is that myofibroblasts use
both contraction regulation pathways rather than
relying on either one (Fig. 3). We have addressed this
hypothesis in a recent study by simultaneously
assessing local and global contraction events of cul-
tured cardiac myofibroblasts at the single-cell level
(57). A key finding of this study was that contractions
of dorsal stress fibers engaged with extracellular
matrix-coated microbeads were mediated by varia-
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tions of cytosolic Ca2+, whereas overall isometric cell
tension was maintained through RhoA/Rho-(associ-
ated) kinase-mediated contraction of ventral stress
fibers engaged with an elastic rubber substrate.
Contractile events following periodic cytosolic Ca2+

increases (approximately one contraction/100 s) were
acting on a short range (approximately 400 nm/con-
traction) and were comparably weak (approximately
100 pN/contraction), as measured by atomic force
microscopy (57). This was in contrast to isometric
contraction of the rubber substrate over hours with a
force development of several lN per cell (57, 93). We
developed a lock-step or ratchet model to explain
how global tissue remodeling results from the con-
traction of single myofibroblasts and subsequent sta-
bilization of tissues by secreted extracellular matrix
molecules (57, 209). Long-lasting and strong isometric
cell contractions [Rho/Rho-(associated) kinase] gen-
erate slack in individual collagen fibrils, whereas weak
and short-ranged but periodic microcontractions

(Ca2+) remodel such relaxed fibrils. When the gradu-
ally rising tension in locally pulled fibrils resists fur-
ther local translocation, the new fibril configuration
has to be stabilized, possibly by digestion of local col-
lagen, deposition of new collagen fibrils and cross-
linking (Fig. 3). Although the details of this putative
remodeling step are not explored, it has been shown
that collagen remodeling by matrix metalloproteinas-
es can be regulated by mechanical tension (2, 56).
The stabilized extracellular matrix can then sustain
tissue stress and myofibroblasts are able to respread
(57, 58). The outcome of this process is persistently
remodeled tissue (209).

Substrate stiffness activates
myofibroblasts

The function of myofibroblasts to rapidly re-establish
tissue integrity by secreting and organizing new extra-
cellular matrix is at least partly controlled by a

Fig. 3. Lock step ratchet model of myofibroblast extracel-
lular matrix (ECM) remodeling. (1) In a three-dimensional
environment, myofibroblast stress fibers are connected to
extracellular matrix fibrils (light gray) through cell–extra-
cellular matrix adhesions (orange). Locally intact extracel-
lular matrix architecture protects the populating cells from
strain/stress. (2) Rho-(associated) kinase (ROCK)-mediated
global myofibroblast contraction (red stress fibers) short-
ens the bulk extracellular matrix and generates slack in
individual extracellular matrix fibrils (dark-gray loops). (3)
Such locally relaxed fibrils are now free to be contracted in
a [Ca2+]i-dependent manner by low-contractile-stress

fibers (green). (4) Incremental pulling events gradually
shorten the extracellular matrix fibrils, gradually leading
to stress build-up. (5) Local proteolytic processing and sta-
bilization of the fibrils by new extracellular matrix material
and/or cross-linking mechanically stabilize the remodeled
extracellular matrix. Then, the cell can spread again (out-
wards pointing arrows at adhesion sites) to start a new
cycle, while the extracellular matrix remains shortened.
The central graph is a schematic of the coexistence of long-
lasting overall cell contraction and weak, but periodic, sub-
cellular contractile events.
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mechanical feedback from the extracellular matrix.
Compared with the collagenous extracellular matrix
of intact soft connective tissues, the provisional extra-
cellular matrix produced after acute tissue injury
(e.g. the fibrin clot of dermal wounds) is even softer
(91). Culturing fibroblasts on two-dimensional poly-
acrylamide gels and in three-dimensional collagen
gels with a similar softness suppresses the develop-
ment of stress fibers. It is the spreading of these non-
contractile cells and the de-novo secretion of collagen
that gradually compacts and stiffens the provisional
extracellular matrix (79, 88). During this early remod-
eling process, fibroblasts develop in-vivo stress fibers
and higher contractile forces. One such example is
the neo-formation of stress fibers by granulation tis-
sue fibroblasts in healing and gradually stiffening der-
mal wounds (75, 96). Contraction and migratory
activities of such ‘proto-myofibroblasts’ can initiate
wound closure, but the high forces required to pull
the wound edges together are only produced by dif-
ferentiated, alpha smooth muscle actin-positive myo-
fibroblasts (93, 96). Differentiation of myofibroblasts
is controlled by high extracellular matrix stiffness and
the presence of transforming growth factor beta 1
(209). A plethora of studies have demonstrated the
spontaneous activation of various precursor cells into
myofibroblasts on super-physiologically stiff tissue-
culture plastic or scar-stiff polymer culture substrates
(10, 57, 75, 94, 104, 142, 168, 228, 233).

How fibroblasts ‘feel’mechanical
stress and translate into gene
expression

Stress-activated ion channels

Intracellular Ca2+ not only controls cell contraction
but serves as a universal second messenger in fibro-
blasts, including mechanotransduction (13, 43, 120,
130, 204, 217). Mechanical stimuli and contractile
forces applied to cell-membrane receptors induce
Ca2+ entry through the plasma membrane of locally
and globally stretched fibroblasts (8, 26, 57–59, 113,
119, 134). The molecular identity of mechanosensi-
tive, cation-permeable channels in the plasma mem-
brane is currently not defined. Candidate
mechanosensors belong to the family of transient
receptor potential channels (7, 134). In addition to
regulating Ca2+ entry in response to stretch, me-
chanosensitive ion channels appear to be involved in
the active probing of the mechanical environment by
fibroblasts. As discussed earlier in this review,

increasing substrate stiffness leads to the formation
of contractile stress fibers in fibroblastic cells (10, 57,
75, 144, 174, 238). Consequently, development of
intracellular force is greater on stiff than on soft cul-
ture substrates (31, 36, 45, 115, 150, 181, 202, 214).
High levels of stress fiber formation and contraction
are suggested to result in a higher probability for the
opening of mechanosensitive Ca2+ membrane chan-
nels (82, 102, 129, 206). More recently, the termini of
stress fibers at cell–extracellular matrix adhesions and
cell–cell adherens junctions have been identified as
preferred sites of Ca2+ entry through mechanosensi-
tive channels in the plasma membrane (82). In
migrating fibroblasts, localized Ca2+ influx at the lead-
ing edge, a region of concentrated adhesion sites,
directs cells towards higher substrate stress, a phe-
nomenon called durotaxis (110, 129, 145, 159, 214–
216, 227). Myofibroblast contraction induces stress-
dependent Ca2+ entry in contacting cells at sites at
cell–cell adherens junctions; this mechanism has
been shown to coordinate the contractile activities of
physically connected cells (59).

Mechanosensing at sites of extracellular
matrix adhesions

Cells ‘feel’ tissue stiffness by adhering to the extracel-
lular matrix and actively probing the deformability
using cell–extracellular matrix adhesions and actin/
myosin pulling forces. In most normal connective tis-
sues, fibroblasts do not form extensive cell–extracel-
lular matrix contacts and are entangled in the
collagen architecture. Some reports have demon-
strated expression of extracellular matrix adhesion
protein in periodontal ligament fibroblasts in vivo,
which may be attributed to their important role in
mechanosensing (205). Extracellular matrix adhesions
are best studied in cultured fibroblasts, where the
in-vitro analogs are focal adhesions (69, 157, 183, 226)
(Fig. 2). The size or maturity state of fibroblast focal
adhesions correlates with the stiffness of the culture
substrate and/or the level of intracellular stress. On
soft substrates and in relaxed cells, cell–extracellular
matrix adhesions remain as small focal complexes
(11, 174, 238). The maturation of focal complexes into
larger focal adhesions is stress-dependent and
involves the recruitment of new components into the
adhesion plaque (17, 29, 141, 189, 194).

Stress perception at focal adhesions starts at the
single transmembrane integrin, which connects
extracellular matrix ligands to the intracellular cyto-
skeleton. Computational simulations imply that
forces applied to the avb3 integrin via the 10th type
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III module of fibronectin can shift the integrin to its
active conformation (182). The switch from weak to
strong integrin interaction with fibronectin upon
application of force has been experimentally tested
for a5b1 integrin. Inhibition of cell contraction or
lowering extracellular resistance by cell growth on
soft substrates suppresses the switch to the high-
affinity integrin state (62). Direct application of
force to single a5b1 integrins increased the lifetime
of the adhesion bond, as assessed using atomic
force microscopy (131). A similar mechanism of
binding reinforcement by mechanical stress occurs
at the cytoplasmic side of integrins. Pulling single
integrins with optical tweezers generates a 2-pN
force-resisting slip bond with the actin cytoskeleton
(118), which is mediated by the cytoplasmic protein
talin-1. Forces measured in the same range can
unfold the talin-1 molecule and reveal cryptic bind-
ing sites for another focal adhesion protein, vinculin
(39, 172). Recruitment of vinculin to nascent adhe-
sions further strengthens and matures the adhesion
structure, possibly involving force-dependent con-
formational changes in vinculin itself (67, 78).
Force-induced conformational changes in focal
adhesion protein components is one possible mech-
anism of how mechanical signals are translated into
chemical signals. Central roles in this conformation-
dependent translation step have been attributed to
tyrosine phosphatases and kinases (73, 157, 222).
Other stress-dependent focal adhesion proteins are
vinculin (189), paxillin (194, 242), zyxin (139, 240)
and the actin filaments themselves (83).

The level of actin polymerization
regulates gene transcription via the
myocardin-related transcription factor

The recruitment of monomeric alpha smooth muscle
actin to stress fibers augments fibroblast contractile
activity, whereas loss of alpha smooth muscle actin
from stress fibers acutely reduces myofibroblast con-
traction (93, 95). Long-term treatment of myofibro-
blasts with a peptide that selectively depolymerizes
alpha smooth muscle actin reduces transcription of
collagen and alpha smooth muscle actin (95). This
effect on specific genes may be explained, in part, by
the increased pool of monomeric actin over polymer-
ized F-actin. G-actin controls gene transcription by
interacting with the myocardin-related transcription
factor (MRTF/MAL/MKL) (155, 158, 180, 220).
Enhanced formation of actin filaments and stress
fibers leads to reduced levels of G-actin and increased
liberation of myocardin-related transcription factor-

A, which is then free to travel from the cytoplasm into
the nucleus. Myocardin-related transcription factor-A
directly controls transcription of the alpha smooth
muscle actin gene by binding to CArG elements in the
alpha smooth muscle actin promoter and enhancing
the transcriptional activity of the serum response fac-
tor (26, 151, 200). Myocardin-related transcription
factors A and B also mediate transforming growth fac-
tor beta-1-induced myofibroblast differentiation and
transcription of smooth muscle genes in fibroblasts
(35).

Transforming growth factor beta-1
activation is a consequence of
extracellular stress

Fibroblast contraction and extracellular matrix stiff-
ening have a profound effect on the activation of
transforming growth factor beta-1 from latent stores
in the extracellular matrix. Transforming growth fac-
tor beta-1 is the most potent cytokine known to
induce myofibroblast activation (42, 192). Myofibro-
blasts are able produce and activate their own trans-
forming growth factor beta-1, which partly
contributes to the persistence of myofibroblasts in
fibrosis (231, 234). Transforming growth factor beta-1
and its latency-associated pro-peptide are intracellu-
larly cleaved but remain noncovalently associated.
This small latent complex is secreted with the latent
transforming growth factor beta-1-binding protein as
a large latent complex. Latent transforming growth
factor beta-1-binding protein-1 is an extracellular
matrix protein that stores latent transforming growth
factor beta-1 extracellularly (3, 40, 107, 116, 146, 169,
187, 231). Dissociation from latency-associated pro-
peptide activates transforming growth factor beta-1,
which is physiologically promoted by proteolysis of
the latent complex, action of thrombospondin or
binding of integrins (3, 4, 116, 160, 199, 208, 231). In-
tegrin avb8 supports transforming growth factor
beta-1 activation by proteases that are possibly
guided to the latent complex (116, 164). Integrins
avb3, avb5 and avb6 activate transforming growth
factor beta-1 by transmitting cell forces to latency-
associated pro-peptide independently from proteoly-
sis. The epithelial integrin avb6 was shown to pro-
mote the onset of fibrosis by activating transforming
growth factor beta-1 via traction (3, 72, 103, 117, 161,
235). Mechanical activation of transforming growth
factor beta-1 by the myofibroblast integrins avb3 and
avb5s was suggested to dominate in progressive fibro-
sis (22, 147, 231, 232). Because activation of trans-
forming growth factor beta-1 by cell traction requires
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physical anchoring of the latent complex (3), the stiff-
ness of the extracellular matrix is an important con-
trol element in the activation process (232). It is
conceivable that activation of transforming growth
factor beta-1 by fibroblast contraction only occurs
when the extracellular matrix is sufficiently remod-
eled and that further reorganization requires the
action of higher contractile myofibroblasts (92).

Conclusion

Understanding when and why physiological remodel-
ing to preserve tissue homeostasis and repair injuries
turns into pathological tissue remodeling and over-
healing is a major challenge. The mechanical state of
the extracellular matrix is central in regulating fibro-
blast function and phenotype at several levels and
through different pathways. Therapeutic approaches
are beginning to emerge that directly target cellular
processes resulting in extracellular matrix stiffening,
such as collagen cross-linking through the actions of
lysyl oxidases and related enzymes (14, 219). Another
approach is to interfere with the adhesion of extracel-
lular matrix to fibroblastic cells. Inhibition of specific
myofibroblast integrins in vivo is expected to reduce
force transmission, stress sensing and even activation
of profibrotic growth factors, all of which culminate
in harmful tissue contractures.
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